5

PROPERTIES OF THIONYL CHLORIDE SOLUTIONS (EXTENDED ABSTRACT)

R. COHEN, J. KIMEL, E. ELSTER and E. PELED*

School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv (Israel)

S. EFRIMA

Dept. of Chemistry, Ben Gurion University, Beer Sheva (Israel)

Solutions of alkali metal tetrachloroaluminates in thionyl chloride (TC) exhibit very interesting physicochemical properties [1 - 3]. They have been studied mainly in connection with the development of the Ca-TC battery. It was recently found [4, 5] that replacing the Ca(AlCl₄)₂ electrolyte in the Ca-TC battery by either Ba(AlCl₄)₂ or Sr(AlCl₄)₂ resulted in a battery with a much longer shelf life. This is due to slower calcium corrosion. In these two electrolytes the chemical composition and properties of the SEIs which cover the calcium anode are different from that of the SEI in calcium tetrachloroaluminate. These modified SEIs provide better corrosion protection for the calcium anode than does the CaCl₂ SEI in the Ca(AlCl₄)₂ electrolyte.

The purpose of this paper is to describe the physicochemical properties of TC solutions of calcium, strontium, and barium tetrachloroaluminates, with emphasis on the effect of SO_2 on the solution properties.

At high salt concentrations in solvents of low dielectric constant, e.g., TC ($\epsilon \sim 9$), the predominant species are ionic aggregates [6]. In concentrated MX₂-type solutions in TC (X = AlCl₄⁻, M²⁺ = Ca²⁺, Sr²⁺, Ba²⁺) the smallest and most likely predominant charged ionic aggregates are MX⁺ and MX₃⁻ formed in the following reaction:

$$2MX_2 \Longrightarrow MX^+ + MX_3^-$$

(1)

Accordingly, the equivalent conductivity is twice the molar conductivity. These ionic aggregates may be separated by molecules of the solvent (Y), $(MYX^+ \text{ and } XYMYX^0, \text{ etc.})$ in equilibrium with ionic aggregates with no solvent molecules between the ions.

Density, viscosity and conductivity measurements were made at different SO₂ concentrations in the range 0 - 50 vol.% over a temperature range of 10 - 70 °C and, in some cases, -30 - 230 °C. Over the range -30 to +70 °C for MX₂-TC solutions containing little or no SO₂ and low salt concentrations, the conductivity increases in the order Ca > Ba > Sr. At low temperatures and high SO₂ and MX₂ concentrations the conductivity increases in the

^{*}Author to whom correspondence should be addressed.

Fig. 1. Conductivities of 0.84 M Ba(AlCl₄)₂ vs. temperature. A, 40% SO₂; B, 20% SO₂; C, 10% SO₂; D, 0% SO₂.

Fig. 2. Conductivities of $0.84 \text{ M Sr}(AlCl_4)_2$ vs. temperature. A, 50% SO₂; B, 40% SO₂; C, 30% SO₂; D, 20% SO₂; E, 10% SO₂; F, 0% SO₂.

Fig. 3. Raman spectrum of SOCl₂ containing 30% SO₂. The peak at 1140 cm⁻¹ is assigned to SO₂.

order Ca > Sr > Ba. In CaX₂ [2] and SrX₂ solutions the conductivity increases monotonously with SO₂ concentrations (Fig. 1). In most cases, the conductivity-temperature plot has a peak near room temperature [2] (Figs. 1 and 2) whose location depends on SO₂ and MX₂ concentrations. This means that at higher temperatures the conductivity decreases with temperature. In BaX₂ solutions the effect of SO₂ is more complex (Fig. 2). Increasing the concentration of SO₂ to 50 vol.% results in an increase in conductivity of up to a factor of 8. The density and viscosity of these solutions increase in the order Ba < Sr ~ Ca. It is of interest to note that increasing the concentration of SO₂ to 10 vol.% increases the density of 0.8 - 1.3 M MX₂ solutions but does not significantly alter their viscosity. However, raising the concentration of SO₂ to more than 20 vol.% results in a decrease of both viscosity and density. The equivalent conductivity (eqn. (1)) corrected for the change in the viscosity of MX₂-TC-SO₂ solutions can be as high as 100 Ω^{-1} cm² eq⁻¹.

Raman spectra measurements, taken at room temperature (Figs. 3 and 4) indicated the formation of a complex between SO_2 and M^{2+} . The $M(SO_2)_n^{2+}$ peak height increases with SO_2 concentration. It seems that for

Fig. 4. Raman spectrum of 0.84 M Sr(AlCl₄)₂ in SOCl₂ containing 30% SO₂. The peak at 1147 cm⁻¹ is assigned to the complex $M(SO_2)_n^{2+}$.

 SrX_2 the maximum value of *n* is three. A smaller *n* value is estimated for BaX_2 solutions. Our results can be interpreted as follows. The ionic migration in MX_2 -TC-SO₂ solutions takes place by two parallel mechanisms, a Stokesian and a non-Stokesian relay-type mechanism. The apparent negative energy of activation for conduction at high temperatures results from the breaking of ionic aggregates and shifting from solvent-separated ionic aggregates to intimate ionic aggregates. This should reduce the dissociation constants of the uncharged ionic aggregates (eqn. (1)) and, in addition, it should shorten the hopping range. The enhancement of conductivity by SO₂ at low concentration is predominantly due to the formation of a larger SO₂-M²⁺ complex ion (or aggregate of such ions), and at high concentration is due to the decrease in the viscosity of the electrolytes.

References

- 1 A. Meitav and E. Peled, J. Electrochem. Soc., 129 (1982) 451.
- 2 E. Peled, Proc. 32nd Power Sources Symp., Cherry Hill, NJ, 1986, The Electrochemical Soc., Pennington, NJ, p. 445.
- 3 E. Peled, in J. P. Gabano (ed.), Lithium Batteries, Academic Press, New York, 1983.
- 4 E. Elster, R. Cohen, M. Brand, Y. Lavi and E. Peled, J. Electrochem. Soc., 135 (1988) 1307.
- 5 E. Elster, R. Cohen, M. Brand, Y. Lavi and E. Peled, Proc. 172nd Electrochem. Soc. Meeting, Honolulu, HI, 1987.
- 6 R. M. Fuoss and F. Accascima, *Electrolytic Conductance*, Interscience, New York, 1959.